
Int. J. Multiphase Flow Vol. 14, No. 2, pp. 141-154, 1988 0301-9322/88 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1988 Pergamon Press/Elsevier 

P R E D I C T I O N  O F  T U R B U L E N T ,  S T R A T I F I E D ,  

T W O - P H A S E  F L O W  I N  I N C L I N E D  P I P E S  

A N D  C H A N N E L S  

R. I. ISSA 
Petroleum Engineering, Department of Mineral Resources Engineering, Imperial College of Science and 

Technology, London, England 

(Received 28 April 1987; in revised form 28 October 1987) 

Abs~'act--A method for the prediction of fully-developed, turbulent, stratified, two-phase flow in 
horizontal and inclined pipes and channels is presented. The method solves the two-dimensional 
momentum equations for both phases and accounts for the effects of turbulence through the use of the 
k-E two-equation model of turbulence. The circular geometry of pipe cross-sections is accommodated with 
the aid of a bi-polar coordinate system which fits the pipe wall as well as the interface. 

Predictions with the technique are compared with the results of other methods and with experimental 
data for both pipe and rectangular channel geometries. The ability of the method to handle inclined flow 
is also demonstrated. It is concluded that the treatment of the interface plays an important role in 
determining the overall behaviour of the flow, and this is reflected in the predicted pressure gradient and 
hold-up. 

I .  I N T R O D U C T I O N  

In the petroleum industry, as well as in other engineering fields, stratified, two-phase flow often 
occurs. In such an event, determination of the pressure-drop and hold-up in the channel or pipe 
is essential for design purposes. To this end, several methods, ranging from the purely empirical 
to the almost wholly analytical have been devised. The former ones suffer obvious limitations, 
though in the absence of alternative theoretical models in the past, they have been put to wide use. 
The latter methods offer a more general approach, albeit at the cost of recourse to numerical 
solution. 

The present method builds on two previous works, namely, those of Shoham & Taitel (1984) 
and Akai et  al. (1981). In the first of these, the stratified flow of gas and liquid through circular 
pipes (see figure 1) was considered. The two-dimensional momentum equation for the fully- 
developed flow of the liquid phase was solved by a finite-difference scheme. The effects of 
turbulence within the liquid were simulated using the eddy viscosity model, in which a mixing length 
scale characterizes the turbulent shear stresses. The gas phase, however, was treated as a bulk flow, 
with the wall and interface shear stresses being calculated from friction factors determined by the 
average gas velocity. The geometry of the liquid phase was mapped by Shoham & Taitel (1984) 
in a novel way with the aid of a bi-polar coordinate frame (see figure 2). This system enables the 
computing mesh to be fitted to the wall of the pipe and to the rectilinear interface simultaneously. 
The height of the liquid surface is not known in advance, hence the solution has to be iterative, 
with the mesh being adjusted at each iteration to conform to the position of the interface. 
Calculations were made for flows in horizontal as well as upward and downward inclined pipes. 

In the work of Akai et  al. (1981), the momentum equations for both the gas and liquid phases 
were solved, also numerically. Turbulence was accounted for by the use of a modified form of the 
low Reynolds number version of the k--e model due to Jones & Launder (1973). The work was 
restricted to planar flow in channels and an application was made to air/mercury flow, for which 
experimental data were obtained by the same workers. 

Both of the above works fall short of addressing the complete problem of stratified flow in 
inclined pipes and channels. Thus, Shoham & Taitel ignore details of the gas-phase flow from which 
the pressure gradient is calculated. Reliance on empiricism could not therefore be altogether 
avoided. More significantly, however, the neglect of the structure of the flow in the gas phase is 
contrary to the findings of Akai et  aL, which confirm (both in measurement and in theory) the role 
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Figure 1. Stratified flow in a circular pipe. 

of this phase. Moreover, the mixing length used to determine the eddy viscosity can be defined 
neither well nor universally in pipe problems, as is indeed explained by Shoham & Taitel (1984). 

On the other hand, the work of Akai et al. (1981) is confined to planar flow, although, in 
principle, the governing equations can be generalized to two dimensions. Thus, their calculations 
were one-dimensional, although the data with which comparison was made actually related to a 
two-dimensional situation (the channel aspect ratio was only 2]). 

In the present paper, a method is outlined for the calculation of stratified flow in inclined pipes 
and channels of different cross-sectional shapes, and in which both the gas and liquid phases are 
accounted for fully. The method employs a general curvilinear orthogonal coordinate frame, which 

Figure 2. The curvilinear orthogonal mesh defined by bi-polar coordinates. 
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can handle both circular pipe and rectangular channel geometries, the first being handled with the 
aid of the bi-polar coordinates proposed by Shoham & Taitel. A new solution algorithm was 
devised to solve the governing set of equations in this general geometry. Turbulence is accounted 
for by the use of either the modified form of the low Reynolds number kt model proposed by 
Akai et al. (198 1) or the standard k-c model outlined by Launder & Spalding (1972) for high 
Reynolds number flow. 

The method is appiied to severai flows in both channeis and pipes. The channei flow 
configuration of Akai et al. is computed as a two-dimensional problem and the results are 
compared with the data and the one-dimensional calculations of these authors. Flow in pipes is 
treated next, where calculations are compared with: available data; the results of Shoham & Taitel 
(1984); and calculations performed with the simple method of Taitel & Dukler (1976) for horizontal 
pipes. Flows in inclined pipes are also computed, and the results are compared with other 
calculations for plausibility. It should be pointed out that the present work does not delve into 
the field of turbulence modelling; it merely applies two versions of one particular model (namely, 
the k-c one). The applicability of this model, which embodies the effective viscosity assumption, 
is open to question. This has indeed been raised by Fabre et al. (1983), who demonstrated that, 
at least in their experiment, secondary flow can arise in both phases. Also reported in their work 
is the observation that the incidence of zero shear stress does not necessarily correspond to the 
occurrence of zero velocity gradient. Both of these phenomena would require more sophisticated 
turbulence models which solve for the Reynolds stresses directly. Although this is not attempted 
here, the method presented can be extended with a minimum of effort to incorporate such models. 

2. MATHEMATICAL MODEL 

2.1. The governing equations 

The equations solved are formulated in a general curvilinear orthogonal coordinate system which 
caters for any orthogonal set, including the bi-polar and Cartesian frames used herein for the pipe 
and channel geometries, respectively. The two independent coordinates are designated r and q (as 
shown, for example, in figure 2), and the equations are presented below in a single form, whether 
for the gas or the liquid. 

The fully-developed momentum equation is 

where u is the velocity, p is the density, dp/dz is the pressure gradient in the streamwise direction 
z, 1, and 1, are the metric coefficients which define arc lengths along the r- and q-coordinate lines 
and a is the angle of inclination of the pipe or channel. The quantity p in [l] is the effective viscosity 
which is defined as the sum of the molecular viscosity p,,, and a turbulent contribution pLt, to be 
obtained from the turbulence model described below. 

In this work, two forms of the k-c turbulence model are implemented: the first is the standard 
version originally formulated for high Reynolds number flow; and the second includes the 
modifications proposed by Akai ef al. (198 1) for low Reynolds numbers. The equations governing 
the turbulence kinetic energy, k, and its rate of dissipation, 6, both of which characterize turbulence 
effects, are, respectively 

and 

PI 

[31 

where term B is dependent on the version of the turbulence model used. For the low Reynolds 
number model proposed by Akai et al. (1981) it is 
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otherwise, B = 0. Note that the expression for B is the two-dimensional generalization of the 
original one which was formulated for boundary layer flow. The coefficients Ct, C2, f~ and f2 are 
all given in table 1. The effective diffusion coefficient for e, which is F,, is given by 

r,  = ~ + ~m, [5] 
Or 

where tr is a Prandtl number--also specified in table 1. 
The turbulent viscosity, #t, is related to k and E by 

#t = L C, Pk---~2, [61 
E 

where f~ and C. are coefficients defined in table 1. 
The turbulence Reynolds number, Ret, in table 1 is defined as 

pk 2 
Re, e/~m [7] 

Term G in [3] and [4] is the generation of  turbulence and is given by 

c = . ,  j t8] 

Equations [1]-[3] are to be solved for u, k and E for both phases. However, dp/dz is also unknown, 
and so is the height of the interface between the phases, h. To close the set of equations, two 
additional equations are required; they are 

fAU dA = QL [9] 
k 

and 

fA u = QG, [101 dA 
G 

where A is the phase cross-sectional area, Q is the phase flow rate, and subscripts L and G stand, 
respectively, for liquid and gas. 

2.2. Boundary conditions 
The fact that the flow is symmetric about the vertical mid-plane (or diameter) can be exploited 

to reduce the computing effort. Thus, only half the channel or pipe needs to be considered. At this 
plane of symmetry, the appropriate conditions are that the derivatives of all main dependent 
variables normal to that boundary vanish. 

At the pipe wall, different conditions may be imposed, depending on the turbulence model 
version. For  the low Reynolds number version, the conditions proposed by Akai et al. (1981) are 
imposed. Thus 

Uw = 0, [11] 

k~ = 0 [12] 

Table 1. Values for the turbulence model coefficients 

Value 

High Re Low Re 
Coefficient model model 

Ct 1.44 1.45 
C 2 1.92 2.0 
f, 1.0 1.0 
f2 1.0 1 - 0.3 exp(- Re~) 

fz 1.0 ex - 2.5 1 + ~ -  

C~ 0.09 0.09 
o 1.3 1.3 
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and 

Ew = [131 

where subscript w denotes a wall value. Also, the shear stress at the wall is calculated from 

Ou 
z. = l. Or/" [14] 

When the high Reynolds number model is implemented, the boundary conditions are imposed with 
the aid of "wall functions" [see, for example, Launder & Spalding (1972)]. Thus, the shear stress 
is calculated from the log-law: 

u+ =-1 in EAr/+ [15] 
K 

In [15] At/+ is the normalized distance Arl from the wall along the ~/-coordinate, and u + is the 
velocity normalized by the friction velocity. The constants x and E take the values of 0.4 and 9.793, 
respectively. Equation [15] is assumed to be valid in the region between the wall and the first interior 
grid node, provided that the flow is fully turbulent (judged by the value of At/+); otherwise, [14] 
is used instead. For the turbulence energy and dissipation, the values o fk  and E at the interior points 
adjacent to the wall are fixed by 

and 

k = Zw/p [16] 

E = [17]  

2.3. Interface treatment 

At the interface, constraints on the behaviour of the dependent variables are needed in both 
phases. Such behaviour is at present incompletely understood, especially as the interface can often 
be wavy which makes the prescription of interface conditions an even more tentative affair. It is 
customary to treat the interface as a moving wall, whereby boundary conditions appropriate to 
such a wall are imposed. In the case of a wavy interface, it has been sometimes suggested that the 
interface behaves as a rough wall. 

In their work, Akai et al. (1981) pointed out the importance of the conditions to be imposed 
at the interface, especially when this becomes wavy as occurs at high gas flow rates. The present 
work confirms this conclusion. Unfortunately, Akai et aL (1981) could only propose an empirical 
relationship between the interface waves (characterized by roughness parameters) and the gas 
Reynolds number. Such a relationship, of course, fits their particular set of data, and cannot 
therefore be generalized to other flows. Much research is needed, both experimental and theoretical, 
to arrive at a general model to reflect the effects of these waves, a model which is independent of 
the geometry of the flow. 

In this respect, two main issues in the work of Akai et al. (1981) are open to question. These 
are: (i) the constraint imposed on dissipation; and (ii) the assumption of continuity of k at the 
interface, The first of these issues is addressed later. As for the second, it can be argued that it 
is the normal stresses that should be continuous there. If this is true, then the turbulence kinetic 
energy in the two phases will differ by the ratio of the fluid densities. In this work, however, in 
order to reproduce the calculations of Akai et aL the same condition which assumes the continuity 
of k has been invoked for the low Reynolds number cases. 

As for the treatment of E, and the constraints on k for high Reynolds numbers, several options 
have been implemented herein, all of which, it must be stressed, are tentative in the absence of a 
more precise analysis of the flow in the vicinity of the interface. 
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In conjunction with the low Reynolds number turbulence models, the shear stress at the interface, 
zi, is here calculated from 

]Am OU 
Zi = & On [18] 

for both phases, when the surface is assumed to be smooth. Alternatively, for a wavy interface, 
the practice of Akai et al. (1981) based on a "rough" wall function, is used. Thus, z~ is evaluated 
in the gas phase from 

u+ =-1 lnEr At/ , [19] 
x A~h 

where Ar h is a characteristic roughness height to be related (empirically) to the waves' structure, 
and Er is an empirical constant. For the liquid phase, the shear stress is calculated from 

/L 8u 
"['i lq ~1" [20] 

For the present calculations with the wavy interface assumption, the expression for At/r suggested 
by Akai et al. is used. 

As for k and E, these are taken as 

ki = 0 [21] 

and 

for the smooth interface case; and 

and 

E, = ] [22] 

ki > 0 [23] 

0E 
- -  = 0 [ 2 4 ]  

for a wavy interface. The finite value for ki in [23] is again taken from the empirical relation given 
by Akai et al. (1981). However, the boundary condition on E in [24] differs from that perceived 
to be used by Akai et al. (namely [22]). This alternative has been introduced because the former 
can lead to very small dissipation at the interface (since the gradient of v/k may vanish), which 
results in unrealistically high levels of turbulent viscosity. The zero-gradient condition in [24] stems 
from the assumption that no diffusion of E occurs across the interface. Other conditions on e, such 
as those suggested by Celik & Rodi (1984), could also have been imposed; however, such an effort 
should be included in a separate systemic study which is outside the scope of this work. 

When the high Reynolds number model is invoked, the wall function given by [15] is utilized 
to determine zi for both phases, when the interface is smooth; otherwise [19] and [20] are used. The 
conditions on k and E are derived from wall functions corresponding to [16] and [17] which apply 
to points adjacent to the interface, whether this is rough or smooth. 

3. NUMERICAL METHOD OF SOLUTION 

3.1. The computing mesh 

The governing equations [1]-[3] are solved numerically by a finite-volume technique. This entails 
the discretization of the solution domain into a finite number of four-sided cells whose faces 
coincide with the orthogonal coordinate lines. Values of all computed variables are stored at cell 
centres (called nodes). A typical cell is shown in figure 3. The interface between the phases is 
arranged here to be aligned with the boundary between two rows of cells. Since the location of 
the interface is not known a priori, the mesh distribution over the cross-section can only be an 
outcome of the solution itself. What may be fixed in advance, however, is the number of mesh cells 
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E 

Figure 3. Typical cell in the computing mesh. 
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covering each phase. The mesh is defined by the specification of the arc lengths of the faces of each 
cell; these are denoted by A~ and A~/, respectively, which stand for 1¢ d~ and I, d~/. The values of 
A~ and A)/ are determined by the coordinate frame used and by how the mesh is distributed. 

For the case of channel flow, cartesian coordinates are obviously the most appropriate ones to 
use, in which case, the cells are of rectangular shape. In this case, A~ and A~/can be calculated 
simply from the breadth and height of the channel, and the number of cells in each direction. 

For circular pipe flow, the bi-polar coordinate system, which can accommodate the straight-line 
configuration of the interface, is utilized, following the practice of Shoham & Taitel (1984). Unlike 
their work, however, the practice adopted here is based on the use of physical arc lengths instead 
of the increments d~ and d~/. These arc lengths are calculated according to the relations given in 
the appendix. A typical mesh configuration is illustrated in figure 2. 

3.2. The finite-difference equations 
The finite-difference form of [1]-[3] is obtained by integration of these equations over discrete 

cells, such as that surrounding node P shown in figure 3. For the purpose of illustration, this process 
will now be carried out using [1] as an example. The treatment of [2] and [3] follows the same lines. 

Multiplication of [1] by A~ A~/and integration give 

- ~ (up-us )  -(A~A~)p ~ - (A~At / )p0gs ine - -0 ,  [25] 
$ 

where the subscripts e, w, n, s, E, W, N and S refert to either grid nodes or to cell faces, as 
illustrated in figure 3. 

The quantities ~ in [25] are taken to be average values which prevail over the whole of the cell 
face denoted by the subscript and are interpolated from their nodal values. Equation [25] may be 
re-written as 

Apup -.~ ,,4EU E 4- Awu w "1"- ANUN + AsUs + Sp, [26] 

where 

AN= /~ [27] 
n 

tThese subscripts may be construed as referring to directions _East, West, North and South. 

M.F. t4/2--B 
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with similar expressions applying for the As, A~ and Aw coefficients, and where Sp is a source term 
containing the pressure gradient and gravitational force. 

The coefficient Ap is given by 

Ap = AE + Aw + Ar~ + As. [28] 

Equation [26] is symmetric and can be solved by any of the standard schemes for the solution 
of linear sets of equations. 

Similar equations to [26] can be derived for k and E. The only difference in treatment accorded 
to these equations is that the negative parts of the source terms are preferably shifted to the l.h.s. 
of the equation where they are treated implicitly; this enhances diagonal dominance and stability, 
as well as precluding the possibility of negative values for k or E (which is non-physical) being 
obtained. 

Under-relaxation was found to be necessary to promote the stability of the overall solution 
process. This is introduced in each equation as a pseudo time-dependent term in which the time 
step size is proportional to Ap. Thus, if the relaxation factor is 2, then Ap is replaced by (1/2)Ap 
and Sp should be augmented by [(1 -2) /2lAp.  

3.3. The method of solution 

The set of algebraic equations such as [26] are solved iteratively. In each cycle of calculations, 
the pressure gradient, dp/dz, and the height of the interface, h, are first estimated; the velocity u 
is then obtained from the momentum equation [26]. The pressure gradient is then adjusted so as 
to satisfy overall continuity; h is then updated so as to give the correct split between the flow rates 
of the two phases (an outline of how this is implemented is given below). The k and E fields are 
computed next from their own equations (like [26]). The cycle is repeated until convergence is 
attained; this is judged by monitoring the sums of the absolute residuals in the field for each of 
the variables. 

The calculation of the pressure gradient in each iteration is performed according to the following 
procedure. At the beginning of the cycle, the pressure gradient is estimated (from the previous 
iteration). The momentum equation [26] is solved to give the velocity field over the whole 
cross-section. This velocity field will not give the correct total flow rate, unless the solution is 
converged, since the value of dp/dz is only an estimate. The pressure gradient in the momentum 
equation [25] is now updated such that the new velocity field denoted by u satisfies the overall flow 
rate; thus 

E ap up = Qc + QL [29] 
G + L  

where the summation is over all cells in the domain, ap is the cell area, and QG and QL are the 
flow rates of the gas and liquid phases, respectively. 

Next, the calculation of h, the height of the interface, is dealt with. This is based on the fact 
that h provides a measure of the split between the flow rates of the individual phases. Hence, h 
must satisfy the flow rate of one of the phases; here, the flow rate of the gas is considered. 

Unless the solution is converged, the gas velocity and flow area (which depends on h) will not 
satisfy the flow rate of gas. The value of h is now adjusted, such that the new cell areas, denoted 
by a, satisfy the relationship 

apUp = Q~, [301 
G 

where the summation is over all cells in the gas phase. 

4. RESULTS 

4.1. Channel flow 

The flow geometry in question is that presented by Akai et ai. (1981), in which the phases are 
air and mercury, flowing at low Reynolds numbers in a rectangular channel with an aspect ratio 
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Figure 4. Film thickness in channel flow. Figure 5. Pressure gradient in channel flow. 

of 2:: 1. Despite this small ratio, the calculations carried out by these workers were for planar 
geometry. The results were compared with data obtained from their own experiment. 

Here, the same flow is computed over the two-dimensional cross-section in order to account for 
lateral variations as well as for the shear stresses on the side wall. The present computations are 
different in other aspects also. The zero-gradient condition on L at the wavy interface [24] is used 
here in place of condition [22], which is the one perceived to be used by Akai et al. The latter 
condition applies at a smooth wall, well into the sublayer, whereas the actual case is that of highly 
agitated flow with a finite k at the interface. 

The other major difference between the two calculations is the use of the high Reynolds number 
model in the present work, when the Reynolds number exceeds 104, as happens with the gas phase 
in certain cases. All computed cases were with a liquid Reynolds number of 8.04 x 103. 

Figure 4 displays the computed film thickness as a function of the gas Reynolds number, while 
figure 5 shows the same for the pressure gradient. The results are compared against the calculations 
and data of Akai et al. (1981). The latter calculations are with the wavy interface treatment 
throughout, while the present results are obtained from assuming a smooth interface up to a gas 
Reynolds number of 5000, and a rough one thereafter. The empirical formulae given in the cited 
reference for the roughness height and the interface turbulence energy are also employed here. 

The comparison shows that a reasonable match with the data is obtained, except at the lower 
Reynolds numbers when the computed pressure gradients overestimate the data considerably. It 
is thought that at these low Reynolds numbers (2000-4000), the k-c model fails to capture the 
correct turbulence levels, which is not surprising since transition takes place in this regime. It is 
not clear, however, what modifications Akai et al. introduced into their calculations for gas 
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Figure 6. Velocity and turbulence energy profiles in channel flow at Reo = 2.34 x 10’. 
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Figure 7. Velocity and turbulence energy profiles in channel flow at R% = 1.32 x 104. 

Reynolds numbers < 5000, as their computations are apparently based on the wavy interface 
treatment, when clearly this is not realistic. 

Figures 6 and 7 compare the profiles of the velocity and kinetic energy (normalized in the same 
fashion as by Akai et al.) for each phase; the first figure is for a gas Reynolds number of 2.34 x 103, 
and the second is for 1.32 x 104. The level of agreement with the data is satisfactory. It was found 
that the effects of the end walls are indeed negligible, thus vindicating Akai et al. (1981) in their 
one-dimensional approach. 

The present computations were performed with 80 nodes in the vertical direction (with 30 being 
in the liquid phase) and 10 in the lateral direction. 

4.2. Pipe flow 

The method is here applied to the calculation of gas/liquid flow in circular, horizontal and 
inclined pipes. Comparison of the results will be made against data, the calculations of Shoham 
& Taitel (1984), whose method solves for details of the liquid phase only, and the simpler model 
of Taitel & Dukler (1976). All the calculations made with the present method used the smooth 
interface treatment, in the absence of knowledge of the wave characteristics at the interface. 

First considered is the horizontal pipe case. Several experiments had been conducted in the past 
for horizontal flow, using different configurations. The data are usually presented in the form of 
plots of EL, the fraction of cross-sectional area occupied by the liquid phase, and of ~o, which 
is defined as 

c ~ _  /(dp/dz)tp 

where the subscript tp denotes the two-phase case and Gs stands for the single-ighase flow of gas. 
These quantities are plotted against the Lockhart-Martinelli parameter, X, which is defined as 

/(dp/dz)Ls 
Z = ~J(dp/dz)~s' 

where the subscript Ls denotes single-phase liquid flow. 
Figures 8 and 9 display such plots. The shaded area covers the scattered data obtained from the 

various experiments. These are due to Cheremisinoff & Davis (1979). Agrawal et al. (1973), Govier 
& Omer (1962), Hoogendoorn (1959) and Bergelin & Gazley (1949). Also shown in these figures 
are: the present predictions; those of Shoham & Taitel (1984); and the predictions, by the latter 
authors, using the Taitel & Dukler (1976) model. The results of Shoham & Taitel (1984) are based 
on a wavy interface empirical correlation for the interface shear stress. The present calculations 
were made with air and water in a 2.54 cm dia pipe. The figures show good correlation between 
data and predictions. It is somewhat surprising, however, to find that the present calculations agree 
more with the results of the Taitel & Duckier (1976) model than with those of Shoham & Taitel 
(1984) at high values of X. At lower values, however, when surface waves become prominent, the 
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Figure 9. Pressure gradient in a horizontal pipe. 

departure between these calculations is to be expected due to the differences in the treatments of 
the interface. Nevertheless, the agreement is good considering the fundamental differences between 
all these methods. 

The velocity contours for both gas and liquid in the cross-section of a pipe of 2.54 cm dia are 
presented next. The fluids are air and water flowing at superficial velocities of  1.0 and 0.1 m/s, 
respectively. Three pipe inclinations are considered: horizontal, upward inclined (+10  °) 
and downward inclined ( -10° ) ;  these cases were also computed by Shoham & Taitel (1984). 
Figures 10-12 display these contours for the respective cases. 

A comparison between the presently predicted contours and those of Shoham & Taitel (not 
shown) reveal certain similarities and some differences. The main departure between the two 
calculations is that, unlike the cited work, the present method does not predict reverse flow for 
the upward inclined pipe. This illustrates how important solving for the gas can be. It is obvious 
that, for this case, the gas turbulence, which affects the interface shear stress, plays a major role 
in preventing liquid flow reversal. Indeed, the computed interface shear stresses were about five 
times those obtained from the empirical formula employed by Shoham & Taitel (1984). In order 
to verify this hypothesis, a computation was made in which the flow of both phases was assumed 
to be laminar; as anticipated, reverse flow occurred. 

The values of h/d and ~bo computed for these cases are compared with the results of Shoham 
& Taitel (1984) and of the model of Taitel & Dukler (1976) in table 2. Agreement is close, with 
the exception of the downward inclined case. Here, again, the reason behind this difference is the 

A 0 . 0 5  

B 0 . 0 8  

C 0 , 1 2  
D 0 . 1 6  
E 0 . 1 8  

F F 0 . 2 0  

H 1 . 0 0  
I 2.00 

J 2.50 
K 3 . 0 0  

L 3.50 

Figure 10. Velocity distribution in a horizontal pipe--contours in m/s. 
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~ J F ~  / ~ \  A 0.04 A 0.70 
B 0.06 B 0.80 
C 0.08 C 0.90 
D 0.10 D 1.00 
E 0.15 E 1.10 

o. o ~ G 0.:30 G 1.30 
H 0.40 H 1.40 

B I 10.00 I 1.50 
d 15.00 d 1.60 
K 20.00 
L 24.00 

Figure I1. Velocity distribution in an upward Figure 12. Velocity distribution in a downward 
inclined pipe---contours in m/s. inclined pipe---contours in m/s. 

inclusion of the gas phase in the present analysis, which is expected to yield more accurate results 
for the shear stresses acting on this phase. The other methods calculate these stresses based on the 
assumption that the gas velocities are much greater than the liquid ones. In the downward inclined 
flow, because of the differential effect of gravity, the phase velocities are almost equal, thus grossly 
violating the above assumption. It is therefore expected that the present calculations should prove 
to be the more realistic of the three. 

The predictions were performed with a 40 x 40 mesh. In order to verify the independence of the 
solution on the mesh size, calculations were also made with a grid of 20 x 20. These gave negligible 
differences from the finer mesh results, hence proving grid independence. Typically, a 20 x 20 mesh 
calculation requires 26 CPU seconds on the CYBER 855 machine to converge to a tolerance of 
10 -3 on normalized residuals. 

5. CONCLUSIONS 

A method for the calculation of fully-developed, stratified, two-phase flow in inclined channels 
and pipes has been presented. The method includes two versions of the k-~ turbulence model, for 
high and low Reynolds numbers, respectively. It is based on the solution of the basic governing 
differential equations numerically, using a finite-volume technique, and a curvilinear orthogonal 
mesh which caters for both rectangular and circular cross-sections; a bi-polar coordinate system 
is utilized for the latter. The algorithm solves the set of finite-difference equations in an iterative 
loop, in which the equations are solved sequentially. The pressure gradient is computed from the 
requirement that the velocity field in both phases must satisfy the total flow rate, while the interface 
height is calculated such that the correct split between the flow rates of the two phases is obtained. 

The method was applied to both channel and pipe flow cases, and the results compared with 
available data and other calculations. Agreement is found to be close. The merit of the method 

Table 2. Computed surface height and pressure gradient in an inclined 
pipe 

Inclination Present Taitel & Shoham & 
angle Quantity calculation Dukler (1976) Taitel (1984) 

0 o hid 0.59 0.59 0.66 
~b G 3.7 3.7 5.5 

+ 10 o h/d 0.89 0.89 0.89 
~b o 37.0 38.0 38.0 

_ 10 o h/d 0.16 0.17 0.18 
~o 0.73 1.86 1.85 
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in including the gas phase in the analysis is highlighted in some of the applications where empirical 
correlations normally used for the gas phase become invalid. 

The question of what boundary conditions to impose on k and E at the interface, especially in 
the presence of waves, remains unresolved. These need further examination and assessment. In 
particular, the boundary constraint on E suggested by Akai et al. (1981) was found to be somewhat 
unreliable; it is this which prompted the introduction in this work of the zero-gradient boundary 
constraint in its place. A further study of these conditions is warranted. 
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APPENDIX 

The Bi-polar Coordinate System 

Given the pipe geometry of figure 1, a bi-polar coordinate frame can be defined by 

x + i y = i c  cotan ( - ~ ) ,  [A.I] 

where i is x/ /-~,  ~ and ~/are the coordinate directions shown in figure 2, and c is a constant. 
It can be shown from [A.1] that 

- c  sinh 
x = [A.2] 

cosh ~ - cos ~/ 

and 

c s i n  t/ 

Y = cosh ~ - cos ~" [A.3] 
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The metric coefficients can be derived from 

'¢ = N / ( ~  \2) +~[dY) 2 

with a similar expression for 1,. Such relations lead to 

Icl 
1¢ = l, = cosh ~ - cos t/" 

The arc length along l-direction lines, A~, is given by 

Integration gives: 

for cos t / #  - I ;  and 

f,:~ f~ ~ Icl A¢ = l¢ de = de. 
, , cosh ~- -  cos t/ 

2lc, [ ( N / l + c o s t / t a n h ~ ) f 2  A¢ = -7--- tan -I 
s i n  t/ ] - -  COS t/ ~, 

A¢ = ]cl [ tanh ¢]¢2 
2J:, 

for cos t/ = - 1 ;  which corresponds to the interface, i.e. y = 0. 
The arc length along the t/-direction lines, At/, is 

At /=  1~ d r /=  cosh ¢ - cos t/ 
l I 

which leads to: 

dt/ 

[A.4] 

[A.51 

[A.6] 

[A.7] 

for cosh ¢ # 1; and 

A~ = -Icl cotan ~ [A.91 
L .  ...Ir/l 

for cosh ¢ = 1; which corresponds to the vertical diameter i.e. x = 0. 
Specification of ~1, ¢2 etc. on the interface therefore determines the grid distribution in the 

l-direction, while the definition of ~1, ~ etc. on the vertical diameter determines the mesh 
distribution in the t/-direction. The arc lengths are then calculated from [A.6] and [A.8]. 

:lcl [ ( /cosh ¢ + 1 
sinh----~ L tan- ~ tan - / !  [A.8] \~ /cosh  ( - 1 2j_],, 


